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Abstract

In the present paper a closed-form representation for the derivative of non-symmetric tensor power series is pro-
posed. Particular attention is focused on the special case of repeated eigenvalues. In this case, a non-symmetric tensor
can possess no spectral decomposition (in diagonal form) such that the well-known solutions in terms of eigenpro-
jections as well as basis-free representations for isotropic functions of symmetric tensor arguments cannot be used.
Thus, our representation seems to be the only possibility to calculate the derivative of non-symmetric tensor power
series in a closed form. Finally, this closed formula is illustrated by an example being of special importance in large
strain anisotropic elasto-plasticity. As such, we consider the exponential function of the velocity gradient under simple
shear. Right in this loading case the velocity gradient has a triple defective eigenvalue excluding the application of any
other solutions based on the spectral decomposition.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Tensor-valued functions defined in terms of power series with respect to non-symmetric tensor argu-
ments are commonly used in continuum mechanics. For example, the exponential function of the velocity
gradient or other non-symmetric strain rates is very suitable for the formulation of evolution equations in
large strain viscoplasticity (see e.g. Sansour and Kollmann, 1998) as well as in anisotropic and particularly
single crystal plasticity (see e.g. Steinmann and Stein, 1996; Miehe, 1996). However, by implementing the
exponential mapping algorithm one needs not only the exponential function itself but also its derivative
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which is indispensable for the formulation of consistent algorithmic tangent moduli. If symmetric, an
isotropic tensor function along with its derivative can easily be obtained on the basis of the spectral de-
composition (Bowen and Wang, 1970, 1971; Chadwick and Ogden, 1971). This is certainly the case for
exponential and any other tensor functions expressible in terms of power series since such functions rep-
resent a subclass of isotropic tensor functions. Thereby, the derivative of the isotropic tensor function can
alternatively be obtained by means of the so-called basis-free representations based on the spectral de-
composition as well (Carlson and Hoger, 1986; Xiao, 1995; Xiao et al., 1998). On the contrary, a non-
symmetric tensor argument can possess no spectral decomposition (in diagonal form) which necessitates to
seek for other approaches (see e.g. Moler and Van Loan, 1978). A direct calculation of the derivative of
tensor power series (de Souza Neto, 2001) is numerically extremely expensive and for this reason inefficient.
A more elegant approach is based on the recurrent computation of the coefficients in the tensor power series
representation resulting from sequential application of the Cayley—-Hamilton theorem. Until now this
procedure has only been used for the calculation of tensor power series (Miehe, 1996; Sansour and Koll-
mann, 1998) though it can likewise be implemented also for their derivative. With respect to numerical costs
this procedure is more economical since the maximal tensor power is restricted to two. However, the un-
derlying representation cannot be regarded as closed one. Indeed, the calculation of scalar coefficients
imbedded in this representation is based on the series being infinite for exponential and other tensor
functions defined by infinite power series.

To overcome the above mentioned difficulties we propose in the present paper a closed-form solution for
the derivative of tensor power series. The underlying idea is rather simple. By means of the sequential
application of the Cayley—-Hamilton theorem one can obtain the closed-form representation for the de-
rivative of tensor power series. The scalar coefficients in this representation depend only on the principal
invariants or eigenvalues of the tensor argument. For this reason this representation must hold for all
tensor arguments with the same principal invariants or eigenvalues independent of whether these tensors
possess a spectral decomposition or not. In the case of distinct eigenvalues a tensor argument always
permits a spectral decomposition. Thereby, we may use the closed-form solution in terms of the eigenvalue-
bases even if the tensor argument is non-symmetric (Itskov, 2002). Using a limiting procedure this solution
can then be extended to the case of repeated eigenvalues where a non-symmetric tensor argument generally
possesses no spectral decomposition.

The paper is organized as follows. First, we introduce some necessary tensor notations and definitions
(Section 2). A difficulty in dealing with non-symmetric tensors are partly complex eigenvalues and eigen-
projections, so we are required to define complex vectors and tensors as well as operations with them (see
also Boulanger and Hayes, 1993). In Section 3 we recall the well-known recurrent procedure for the cal-
culation of tensor power series and extend it to the computation of their derivative. The recurrent com-
putations can be avoided by means of the closed-form representation obtained in Section 4. For the
derivative of the tensor power series we present in Section 5 an alternative form of the closed formula. It is
based on the direct differentiation of the above mentioned tensor power series representation resulting from
the application of the Cayley—Hamilton theorem. By using some universal tensor identities both results are
shown to be equivalent. Particular attention is focused in Sections 4 and 5 on the special case of repeated
eigenvalues. In this case a tensor argument can possess no spectral decomposition such that our solutions
seem to be the only possibility to calculate the derivative of non-symmetric tensor power series in a closed
form. On the contrary, in the special case of the tensor argument possessing a spectral decomposition the
solutions proposed in the paper are shown in Section 6 to coincide with the well-known representations
for isotropic functions of symmetric tensor arguments (see e.g. Carlson and Hoger, 1986; Xiao, 1995; Xiao
et al., 1998). Finally, an application of our closed formulas is illustrated in Section 7 by an example of the
exponential function of the velocity gradient under simple shear. In this loading case the velocity gradient
has a triple eigenvalue and only two linearly independent eigenvectors excluding the application of any
other solutions based on the spectral decomposition.
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2. Basic notations and definitions

Let C* be a three-dimensional vector space over the field of complex numbers C. The scalar product of
two complex vectors is defined without using the complex conjugate values and is linear and commutative
with respect to both arguments (see Boulanger and Hayes, 1993):

a-b=b-a, VabeC. (1)

Let Clin be a set of all linear mappings of C* into itself. The elements of Clin are called second-order tensors
(bold capitals). Second-order tensors can be formed from vectors with the aid of the tensor product “®”
defined by

(a@b)x=(b-x)a, x(a®b)=(x-a)b Va,b,x € C°. (2)

Through the standard operations of sum and multiplication with a scalar Clin constitutes a finite-
dimensional vector space. The set Lin of all linear mappings within the three-dimensional vector space R’
over the field of real numbers R represents an important subset of Clin. Symmetric and orthogonal second-
order tensors constitute in turn subsets of Lin defined in the following manner: Sym = {A € Lin : A = AT},
Orth={QecLin:Q=Q"}.

Fourth-order tensors form a set €lin (Zin) of all linear mappings of Clin (Lin) into itself such that (cf.
Del Piero, 1979):

B=2:A, BecCln VA € Clin, V¥ € €lin. (3)

For the construction of fourth-order tensors from second-order ones we introduce the tensor products
“® ” and “x” defined by (Itskov, 2000, 2002)

A®B:C=ACB, (AxB):C=(B:C)A VA, B, C € Clin. 4)

Further, the simple contraction of fourth- and second-order tensors can be defined in the following
manner

(AZB): C=A(2 :C)B, V2 € €lin, VA,B,C € Clin. (5)
The main object of the paper are tensor-valued tensor functions G(A) defined by tensor power series
G(A) =yl + ;A + ,A? + 13A° + .-~ VA € Dlin C Lin, (6)

where y; € R (i =1,2,...) denote scalar constants. If infinite, the power series (6) is assumed to be con-
vergent over the definition domain Dlin of the corresponding tensor function G(A).

The tensor power series (6) represent a subclass of isotropic tensor functions characterized by the
condition (see e.g. Truesdell and Noll, 1965):

G(QAQ") = QG(A)Q", VQ ¢ Orth. ()

For example, the exponential tensor function can be defined in the form (6) by

o0

exp(A) = %A”. (8)

Of special importance for the following discussion is the derivative of a scalar- «(A) : Lin — R and a
tensor-valued function G(A) : Lin — Lin with respect to their tensor argument A € Lin. These functions
are said to be differentiable if the directional (Gateaux) derivatives

d (A + sX)

d
o and - G(A +5X)

s=0 5s=0
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exist in a neighbourhood of A and are continuous at A and there exist a second- ®(A),s € Lin or a fourth-
order tensor G(A),x € Zin, respectively, such that (see e.g. Truesdell and Noll, 1965)

G X = LG(A +5X) VX € Lin. 9)

a(A)a: X = ioc(A + sX)
s=0 ds 5s=0

ds
The tensors a(A),s and G(A), are referred to as derivative or gradient of the tensor functions «(A) and
G(A), respectively.
By using the definitions (4); and (9) one can easily obtain

n—1
A= 7, A",A:ZA"*‘*’@;A", n=12,..., (10)

r=0

where .# = I ® I represents the fourth-order identity tensor. Of special importance are also the following
product rules of differentiation (Itskov, 2000, 2002)

(AB)ac = A?C B+ AB7C ) (OCA),B =A X B +aA7B ) (1 1)
directly resulting from the definitions (4), (5) and (9).

3. A recurrent calculation of tensor power series and their derivative

The tensor power series (6) and their derivative can be computed by means of the recurrent relations
recalled below. The recurrent procedure is based on the sequential application of the Cayley—Hamilton
theorem written as

AP —I,A? + I,A — III,I =0, VA € Lin, (12)

where the coefficients I, II, and III, represent the principal invariants of A defined by
1
L=trA, L= [(trA)2 - trAz}, 11, = det A. (13)
By virtue of (12) higher powers of A are expressible by

A= 0T+ VA + DA (14)

where the unknown coefficients cf:) (r=0,1,2;k=0,1,2,...) can be calculated by means of the following
recurrent relations (see e.g. Sansour and Kollmann, 1998)

& =64, r1=0,1,2,

c,Em = c,(czf)IIIIA7 cftl) = c,@] — c,(i)]IIA, cliz) = c,iljl + c,(i)IIA, k=1,2,...
Thus, by using (14) the tensor power series (6) can be represented by

G(A) = gl + 9 A + P,A%, (16)

where the scalar coefficients ¢,, ¢, and ¢, result from
0, = ncl), r=0,1,2. (17)
=0

The relation (16) is well-known for isotropic functions of a symmetric tensor argument as the represen-
tation theorem (see e.g. Truesdell and Noll, 1965). It is essential that this representation is also valid for
non-symmetric tensor functions defined in terms of the power series (6).
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The direct differentiation of the tensor power series (6) with respect to the tensor argument yields by
means of (10)

00 n—1
GA)a=) 71, > A" @A~ (18)
n=1 k=0

Further, by virtue of (14) we obtain the representation

2
G(A)aA = Z nrrAr ® At7 (19)

rt=0

where the scalar coefficients #,, (r,t =0, 1, 2) can be calculated by

Ne=Nw = D1

n—1
n=1 k=0

D r=0,1,2. (20)

Note, that for the exponential and other tensor functions defined by infinite power series, the use of the
representations (16) and (19) requires the calculation of infinite coefficients series (17) and (20).

4. A closed-form solution

To avoid numerical calculation of the coefficient series (17) and (20) closed-form solutions for the tensor
power series (6) and their derivative (18) can be obtained. To this end we again turn attention to the
representations (16) and (19) and in particular to the coefficients ¢, and #,, (v, = 0, 1, 2) appearing there.
Under consideration of (15), (17) and (20) it is seen that these coefficients represent the functions of the
principal invariants or eigenvalues of the tensor argument A. Thus

(pr = (pr(IAu IIA7IIIA) = (pr(/’t’h j'272"3)7

21
Ny, = i’],,t(IA,IIA,IIIA) = 11”(/11, 12723), r,t= 0, 1,2 ( )

The crucial argument in the following consideration is that the functions (21) do not depend upon whether
the tensor argument is symmetric or non-symmetric or whether it possesses a spectral decomposition (in
diagonal form) or not. The coefficients (21) are uniquely determined in terms of the principal invariants or
eigenvalues of the tensor argument. Hence, general expressions for the functions ¢,(4;,4,,43) and
1,1, A2, 23) (r,t = 0, 1, 2) can be obtained considering the special case of a tensor argument with a spectral
decomposition. These expressions will be then valid for all tensors with the same eigenvalues Ay, 4, and 13!
In the case of distinct eigenvalues the procedure formulating the functions ¢,(4;, 4, 43) (r =1,2,3) is

rather standard one. It begins with the spectral decomposition of the tensor argument A € Lin:
A= AM;, MM, = oyMy, k,1=1,2,3. (22)

3
—1

I

Note, that the tensor A is not generally symmetric such that two of its three eigenvalues A4; and the cor-
responding eigenvalue-bases M; (i = 1,2, 3) can be complex. In the case of distinct eigenvalues the eigen-
value-bases are uniquely determined by the Sylvester’s formula:

3 4
A—
Mr = |71| )vr — }LS y yr = 1,2,3, )Ll # /12 7é ;L3 # /11~ (23)

sr



5968 M. Itskov, N. Aksel | International Journal of Solids and Structures 39 (2002) 5963-5978

On the basis of the spectral decomposition (22) the tensor function G(A) (6) can also be given in the spectral
form by

G(A) = Zg()»f)Miy (24)

where the complex function

=Y uh (25)
k=0

is usually referred to as diagonal function. Since the power series (25) converges on the spectrum of
A € Dlin (see e.g. Gantmacher, 1959), the function g(4) defined by (25) is holomorphic and as a result of
that infinitely often differentiable within the circle of convergence. Henceforth, we will also assume that the
function g(4) can equivalently be given in a closed form without any reference to infinite power series (25).
Now, substituting (23) into (24) and comparing the result obtained with (16) yields the well-known
relations (see e.g. Fitzgerald, 1980):
(1) Distinct eigenvalues: Ay # Ay # 23 # A1,

3 ) 3
g(Ai)AjA g(A) (A + ) g(/l,
I T L AR 3 26)
i=1 ! i=1 !
where

To specify the functions #,,(41, 42, 43) (r,£ =0, 1, 2) we first insert the spectral decomposition (22) into
the relation (18). This leads to the closed-form solution for the derivative of non-symmetric tensor power
series in terms of the eigenvalue-bases (see Itskov, 2002):

,A—Zg A1M®M+Zg2_) M, ® M,. (28)
i,j#i o

Considering in this solution the representation for the eigenvalue-bases (23) and comparing the result
obtained with (19) delivers
(1) Distinct eigenvalues: Ly # Ay # 23 # A1,

o= 3 S G _ S iy Ailetin) e
00 i Di2 ij#i ()“i - )”j)3Dk

9

)

3 ) 3 N N N
(A + M) Ailag () (A + M) ridilg(Ai) — g(4))]
Moy = Mo = — +
or = 1o Z D? ; (% — 4;)’Dy

3 3
228 () Litilg(Ai) — g(4))]
to =y = 32 A5 AR,
i i ij#i i

- i: (4 + )¢ (%) i (4 + 2) (i + 2) [ (4) — &(4))]

2 3
i Di ij#i ()“i - )“j) Dy

)
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o = 3 Ca A | S Ut A)lgl) — )

2 3
i Di ij#i ()“i - )“j) Dy

2 g (1)
22:Zg Zg A-’, i#jEkE (29)

3
1 ij#i j)

)

In the case of distinct eigenvalues the expressions for the coefficients #,,(41, 42, 43) (r,¢ = 0,1,2) (29) co-
incide with that ones obtained by Carlson and Hoger (1986) for isotropic functions of symmetric tensor
arguments.

The solution in the case of two repeated eigenvalues A, # 4, = /. results from (26), (27) and (29) as a
limit at A = A, — A. — 0. Thus, we obtain

(it) Double coalescence of eigenvalues: 1, # Ay = 4. = 4, (a # b # ¢),

/L/lg(ia) B iag(;“) /“ag(;“) })“ag,(;“)

T =) Gu—h) Gu— )
_.gl) —g(h) | &)t
. G i) a7

0 _8()—g(h)  g(4)
P (= (=)

(22772 = 62°14)|g(0a) — g(1)] N g (D) + (227 + 42702 — 4020 + 2D)g' (0)

oo = (o — ) (e — )"
N (22722 = 220)g"(A)  2Pig"(h)
(Ja— 1) 6(Jg — 2)
BRI =220 [8(h) —g(A)] 2278 () + (B + ThA® = 2200)8 (A)
Hot = Mo = (o — /1)5 (e — i)4
(BP0 2gh = 73)E"(2) k(e + 2)E"(A)
200 —2)° 6(ha— 27
Hos = 1y — (Za = 32 = 277) g (%) — 8(2)] L 22¢' (Ja) + (2 + 32ad — 4)g (2)
oo (Ja—2)° (Ja— 2)*
(344 — 20" (7)) Ialg" ()

200 —2) 6(ja — 2)
" = g M +32) [g(ﬂ;a)5 10N 422 8 (4a) + A% +22)g'(4) L 22(Aa + A)g;’( ) L (4a + l)zg’”z(i) ’

(ia - /“) (/la - l) ( ) 6(/1a - /1)
M = 1y = (Ja+72)[8(h) —8(A)]  24g'(Ja) + (Ju +50)'(A)  (ha +30)g"(1)  (Ju+ 1)g"(4)

(Ga—2) (Jg— ) 200 —2)° 6(Ja — )’
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_ ,8(k) —g(A)  g(h) +38'(4) g"(4) ¢"(%)
A o) Cad) e AP 6l —if (31)

Similarly we proceed in the case of three repeated eigenvalues. To this end we consider the limit A =
As — 42— 0 1n (30) and (31). This yields
(ii1) Triple coalescence of eigenvalues: Ay = Ay = 13 = 4,

! 1 " (1 " 1 "
0o =g(7) — g (A) + iizg (1), e =g() = 4"(2), ¢.=58"(%), (32)

Pe'G)_7eV0) | Ae'()

Ny = &'(4) — 2g"(2) +

2 12 120
Hot = My = g”éﬂv) _ /lg/;(i») N ﬂ?g‘SV (4) /l3g6\;) ()
Hos = oy — g”'6(i) B /Ig;(;v) N Azig;()x) o= g”’6(z) B iglz (), ;}ivo( 2]

In the following discussion the issue of continuity of the tensor function G(A) given by (16), (26), (27), (30)
and (32) is of major importance. For isotropic functions of symmetric tensors the problem has been ad-
dressed by Man (1994, 1995). Here, it should namely be shown that the solutions (30) and (32) obtained for
the cases of repeated eigenvalues do not depend on the direction of the limits

() (s s ) — Gy 2 2), (i) (s 2y A) — (2 2 2). (34)

It can be seen that the complex functions ¢, (r =0, 1, 2) defined by (26) and (27) are holomorphic at
least for distinct eigenvalues A, # 1, # A3 # ;. The cases of repeated eigenvalues should be treated sepa-
rately. First, we consider the case of double coalescence of eigenvalues (ii). Let 2, = 4, A= 1. — 2 and
0, (A) = ¢,(Ae, A, 2+ A) (r =0,1,2). Keeping in mind that the diagonal function g(Z) is holomorphic one
can expand the functions ¢,(A) in the Taylor power series

0 (A) =) al'A", r=0,1,2 (35)

n=0

in the vicinity of the point A = 0. Note that in the corresponding Laurent series the remaining terms with
negative powers identically vanish. Hence, we infer that the functions ¢,(A) are holomorphic including the
point A = 0. Thus, the solution in the case of two repeated eigenvalues ¢,(0) = a(()r) (r=20, 1, 2) does not
depend on the direction of the limit (34); and is expressed by (30).

Similarly we proceed in the case of three repeated eigenvalues (iii). Let 4, =4, Ay =2, — 4, Ay = 4. — 4
and ¢,(A1,Ar) = @, (4, A+ A, A+ Ay) (r =0, 1,2). In the vicinity of the point (0,0) the complex functions
¢.(A1,Ay) (r =0, 1, 2) are expandable in the Taylor power series

0.(ALAY) = ag)AJAL, 1 =0,1,2 (36)

ke,n=0

and on account of this are holomorphic in this point as well. For example, for the function ¢, the series (36)
begins as follows
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Pa(81, ) = 5 (2) + 22" (DA + A) + 52" (AT + s + D) - (37)
We observe that the solution in the case of three repeated eigenvalues ¢, (0,0) = aé'g (r = 0,1,2) expressed by
(32) is also independent of the direction of the limit (34),. Thus, the tensor function G(A) given by (16),
(26), (27), (30) and (32) is continuous on the whole definition domain Dlin. Using the same reasoning we
infer that this function is also continuously differentiable since the solution for G(A),s (19), (29), (31) and
(33) is continuous on Dlin as well.

Remark 4.1. Instead of the power series (6) an isotropic tensor function can alternatively be defined by
the representation (16) where the coefficients ¢, (r =0,1,2) are expressed by (26), (27), (30) and (32)
and the diagonal function g(/) is explicitly given in a closed form (without infinite series). Such a definition
can be of advantage if the corresponding infinite tensor power series of the form (6) converges only on a
narrow subset of Lin. This can be illustrated e.g. by the logarithmic tensor function. Indeed, the tensor
power series

n
n+1 A_

n

In(A +1) = i(fl)

n=1

(38)

converges if |4;| <1 (i=1,2,3) which vastly restricts the definition domain of the logarithmic tensor
function (38). A more preferable definition is due to the complex logarithmic diagonal function (in the sense
of the principal value)

g(A)=Ini, 140 (39)

in the representation (16), (26), (27), (30) and (32). The logarithmic tensor function obtained in this manner
is defined for all invertible second-order tensors (VA € Lin : det A # 0).

In the case of distinct eigenvalues the tensor argument A € Lin always possesses a spectral decompo-
sition. Thereby, the derivative of an isotropic tensor function defined by power series (6) can alternatively
be obtained by means of the closed formula in terms of the eigenvalue-bases (eigenprojections) even if the
tensor A is non-symmetric (see Itskov, 2002). On the contrary, if some eigenvalues of the non-symmetric
tensor argument are multiple it can possess no spectral decomposition. This is namely the case if a repeated
eigenvalue is defective such that its algebraic multiplicity exceeds the geometric multiplicity i.e. the number
of linearly independent eigenvectors associated with this eigenvalue (see e.g. Golub and Van Loan, 1996).
In this case, the solution (19), (31) and (33) represents, to our best knowledge, the only possibility to
calculate the derivative of infinite tensor power series in a closed form.

5. An alternative form of the closed-form representation for the derivative of the isotropic tensor function

The derivative of the isotropic tensor function G(A) can alternatively be obtained by directly differen-
tiating the representation (16), (26) and (27) with respect to the tensor argument A € Lin. The advantage of
this procedure is that the function G(A) can be given by (16), (26), (27), (30) and (32) without any reference
to the tensor power series (6) which can extend its definition domain (see Remark 4.1).

The critical issue of this procedure is the differentiability of eigenvalues. If distinct, the eigenvalues of a
second-order tensor are proved to be differentiable (for the proof see e.g. Lax, 1997). The derivatives of
eigenvalues can be expressed using the Vieta’s theorem

/l] + },2 + 13 = IA, /1122 + 2213 + }v3/11 = IIA, 111223 = IIIA (40)
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The differentiation of these relations with respect to A yields the linear equation system

1 1 1 Jia I
oty Mtk At laA = LI-A" (O (41)
iady Ak ik VERN [A* — I, A + IL]
which has in the case of distinct eigenvalues the following unique solution
1
/”L,-,A:E(AT—/I_,-I)(AT—}%I):MiT, i#j#k#i=1,23. (42)

Remark 5.1. The identity ;4 = Ml.T is well-known in the perturbation theory for linear operators (see e.g.
Kato, 1966) but we included it to make the exposition self-contained.

Using the relation (42) and with aid of the product rule (11), we obtain another representation
(1) Distinct eigenvalues: Ly # Ay # 23 # A1,

G(A)x = i:a,-[(A — DA = 4D x (A= AD(A =AD"+ 0.7 + 0,(ART+1® A),

i=1
itjEk# (43)
where ¢, and ¢, are given by (26) and

L/, g4 g4 g(4; g(4
(e R0
i WA A ) Di(Ai = 2y)" DA — )

o iZj#£k#i=1,23. (44)
It is seen that the representation (16) is differentiable on the definition domain Dlin C Lin of the tensor
function G(A) at least for the tensor arguments with distinct eigenvalues. In the case of repeated eigen-
values the differentiability of (16) can be shown by means of the Ball’s lemma (Ball, 1984). Accordingly, a
tensor function G(A) is differentiable on a closed sparse subset Slin of the open definition domain Dlin,
if this function is continuous on Dlin and continuously differentiable on the complement Slin =
{A € Dlin : A ¢ Slin C Dlin} and if there exist the limit

lim G(A),», VB eSlincC Dlin, A € Slin. (45)

In the previous section we have shown that the function G(A) defined by (16), (26), (27), (30) and (32) is
continuous on its definition domain. Further, let Slin C Dlin be a subset of tensors with repeated eigen-
values. We first prove that Slin is closed and sparse. Ball (1984) has shown that a sufficient condition for
such a set to be a closed and sparse is that it can be defined by means of a non-constant polynomial p(A) as
Slin = {A € Dlin : p(A) = 0}. The conditions of at least two repeated eigenvalues A, # 7, = . = 4 can be
formulated in view of (40) as follows

ha 20 =1x 24204 =1,, > =1Il,. (46)

Eliminating the eigenvalues we obtain the only condition
1
+(12 - 311,)** = 5 (271, — 91,1, + 21). (47)

Hence, the subset Slin can be formed by the zero set of the scalar-valued function

1

P(A) = (I} = 31L)" — 7 (2711, — 91,1 +213)°. (48)
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Accordingly, p(A) is the polynomial function of the principal invariants and thus is polynomial with respect
to A.

In analogy a polynomial function can also be constructed for the subset Slin characterized by the triple
coalescence of eigenvalues. In this case we obtain instead of (48)

p(A) = (I3 = 311,)° + (27111, — I3)*. (49)
It remains to show that the derivative (43) and (44) has a limit at p(A) — 0. First we rewrite (43) as follows

3 3
G(A)a = AT x AT Y o — (A2 x AT+ A x AT) Y o4+ 4) + (AT x T+ 1 x AT) Zank
i=1 i=1 i=
3
+AX AT "o+ )’ — (AxT+TxA") Z 00 (A + J) + 1 x IZ s
i=1 i=1 i=1

F oI+ ART+IRA), i#jEkHi (50)

Using the procedure described in the previous section it can be shown that the scalar coefficients ap-
pearing in (50) represent holomorphic functions of eigenvalues even if the eigenvalues coincide. Thus,
considering the limit case A = 4, — A, — 0 in (50) we may write

(if) Double coalescence of eigenvalues: A, # 2y = /o = A, (a # b # ¢),

P
7Z> (A = 20)* x (AT = 21> + T[(A — AD)(A — 2,1)] x [(A = AD)(A = 20"

GA)a=|T-
(4 = 4)
+ B x (AT — AT+ 1) — A x (I = AT + A2 x I + ¢,.7 + p,(ART+1®A), (51)
where ¢, and ¢, are defined according to (30) and

_¥ ' ! M :¥ l/// _
F_ua—z)“(g“””g“) S ) ! u(,—;vf(ég ) ‘D>’

_ 1 1 " g/()) g(;°a) - g(;h)
qj_ﬂa—l<_§g ()L)_ﬂva—)v—k (G — 2)° ) (52)

Using a similar procedure we further obtain by setting in (51) and (52) A=/4,—12—0
(ii1) Triple coalescence of eigenvalues: Ay = 2o, = )3 = 4,

g/l/ (/’i)
6

+ (A=) x (AT = AD)| +

IV
Ix (A2 =3 A +32°1D) —Ax BA—A)+A>x I + g () [(A — ) x (AT = 1)

24
glz(g) (A=) x (AT = 1) +[¢(2) — 2g"(M))-#

S (DADT+IRA). (53)

G(A)JA =

Thus, we have obtained the representation for the derivative of the tensor function G(A) in two different
forms (19), (29), (31) and (33) on the one hand and (43), (44) and (51)-(53) on the other hand. It can be
shown that they are equivalent. To this end we first prove some universal tensor identities connecting
fourth-order tensors constructed by the tensor products “x”” and “®” (4). The first identity directly results
from the differentiation of the Cayley—Hamilton relation (12). Thus, we obtain by virtue of (10) and (11)

AQI+ARA+IRA —L,(AQI+I®A) +11,.9
~A’xT+Ax (I,I1-A") —Ix (AT —ILA"+II,I) = ¢ VA € Lin, (54)
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where (0 denotes the fourth-order zero tensor characterized by ¢ : A = 0 VA € Lin. The relation (54) can be
considered as another form of the Rivlin’s identity (Rivlin, 1955) written in terms of fourth-order tensors.
Indeed, through the double contraction of (54) with an arbitrary second-order tensor B we obtain under
consideration of (4)

A’B + ABA + BA” — I, (AB + BA) + II,B — A’Ig + A[I,Ip — tr(AB)]
—1[tr(A’B) — I4tr(AB) + II,trB] =0 VA,B € Lin. (55)

The second important identity reads as

[(A—ZD(A = 4D)] x [(A - 2D (A= 2D)]" = [(A - AD(A - 2D)] @ [(A - AD)(A - 41)],

i#j=12,3, (56)
and follows from the relation (cf. Carlson and Hoger, 1986)
M, x M =M, ®M; (no sum. over i = 1,2,3). (57)

Indeed, expressing the eigenvalue-bases M; of the tensor A € Lin through its right n; and left m; (i = 1, 2, 3)
eigenvectors
M, =n,®m; (no sum. over i = 1,2 3), (58)

and contracting the right and left hand side of (57) with an arbitrary second-order tensor X € Clin we
obtain the same expressions

(Mi X M;r) X = tr(MlX)M, = (ml'an')n,' X m;,

59
(Mi X Ml) X = MiXM,* = (m,«Xn,-)n,» X m; VX S Clln (HO sum. over i = 1, 2, 3) ( )
Further, inserting the representation for the eigenvalue-bases (23) into (57) yields
3 . 3 AT 3 3
A— Al A — Al A— Al A— 1
s s~ i a =1,2,3. 60
H /lr - ;Ls 8 1:[ )w‘ - /ls EI[ ;Lr - )ky @ =1 /lr - ;L,s‘ ’ : T ( )
s sAr s#r S

Thus, it is observable that the identity (56) holds at least for distinct eigenvalues of the tensor A. Con-
sidering the cases of repeated eigenvalues as a limit at 4; — 4, and (or) 4, — /3 tending to zero and keeping
in mind that the nominators in (60) can be represented as continuous functions of the eigenvalues we infer
that the identity (56) is generally valid.

Finally, considering the identities (54) and (56) in the solution (43), (44) and (51)—(53) one immediately
arrives at the representation (19), (29), (31) and (33).

6. Special case of the tensor argument possessing a spectral decomposition

The representations for the tensor power series and their derivative (16), (19), (26), (27), (29)-(33), (43),
(44) and (51)—(53) are valid for all second-order tensors even for those ones that have defective eigenvalues
and thus possess no spectral decomposition. To verify our results we specify the representations (30)—(33)
and (51)—(53) for the special case of the tensor argument possessing a spectral decomposition wherein
solutions for symmetric isotropic tensor functions can be used for the comparison.

In this special case the representations (30)—(33) and (51)—(53) can be simplified by means of the identities
A? = (J, + M)A — 2,71 for the case of double coalescence of eigenvalues (4, # 4, = /. = 4) and A = I,
A% = )™ for the case of triple coalescence of eigenvalues (4 = 4, = A3 = 1). Thus, we obtain the well-
known representation for symmetric isotropic tensor functions (see e.g. Carlson and Hoger, 1986):
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(it) Double coalescence of eigenvalues: 1, # Ap = 2e = 2, A = AM, + 21 — M,),
%ag (1) = 18(4a) | | 8(%a) —&(A) |

G(A) = 61
( ) ;La _ ;L /"La _ /"L Y ( )
da) —g(7) 228 (Ja) + 228 (2 ) — g(2
G(A)n = | — 2, 80 =8 | 2LV F AL |y oy | (g, 4 5 8L 810
(Aa = 4) (Ae = 4) (Ae = 4)
g (L) + g (2 Aa) — g(4 "(Aa (2
_ 8 ) + 2ag'(2) f(ﬂ) A@T+I0A) + | 280 g§)+g( )+g2(> A®A, (62)
(e — A) (Aa — A) (Aa — )
or
GA)A=T( =)V A=) x (AT =)+ ¢, + 0,(ART+1®A), (63)
where ¢, ¢, and I are given by (30) and (52), respectively.
(ii1) Triple coalescence of eigenvalues: Ay = Ay = 23 = A, A = 21,
G(A) = ¢, G(A)w=g/(1).7. (64)

7. Example

To illustrate the application of the closed-form solutions (16), (19), (26), (27), (29)-(33), (43), (44) and
(51)—(53) we consider the exponential function of the velocity gradient under simple shear. In this loading
case the deformation gradient can be given with respect to the Cartesian co-ordinate system by

; I B
F= Fl/ei ® €, F/'=10 1 0 ) e e = 55]7 (65)
10 0 1
where y denotes the shear number. Thus, the velocity gradient L = FF~! takes the form
’ [0 0]
L=1"®e, L'=1]0 0 0. (66)
|10 0 0]

It observable that L has the triple eigenvalue
=l =l3=2=0, (67)

which is defective, since it is associated with only two linearly independent (right) eigenvectors expressible
in the normalized form by

n —=e, n, = ées. (68)

Hence, the tensor L (66) possesses no spectral decomposition (in diagonal form) such that its isotropic
functions as well as their derivative cannot be obtained by means of representations derived with the aid of
the eigenprojections. Instead, we exploit the closed-form solution presented above and compare the result
with that one due to the direct calculation of the tensor power series (8) and (18).

First, according to (16) and (32) we obtain for the case of three repeated eigenvalues

1 : 1
exp(L) =e’~<§zz—i+ 1>I+e‘(1 — L4 5L (69)
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Thus, under consideration of (67)

exp(L)=1+L+ %Lz. (70)

The same result can also be obtained directly from the definition of the exponential function (8) by ex-
ploiting the relation

L'=0, n=23,..., (71)

following from the structure (nilpotent) of the tensor L (66). The derivative of the exponential function
results from (19) and (33)

/12 PR 1 2 20
exp(L)L—eK — A+ = +—>J+(———+— A)(L®I+I®L)

2 120 2 278 60
1 i 2 | A 5 5
+ (8—6+30>L®L+(6—ﬁ+m)<L ®I+I®L)
1 A 2 2 1 2 2
+(24 60)(L ®L+L®L)+mL ®L (72)

or from (53) in another form

A
exp(L).1 :% [I x (L2 = 3)L+320) —Lx (31— L)T + 17 1]
e 2
57 [(L =20 x (LT = 21) + (L= 21" x (LT = 70)|

o
1
+ 53 (L= A7 x (LT - M) (1 2).7 + SCL@I+IgL), (73)
which is equivalent to (72) according to the identities (54) and (56).
Thus, under consideration of (67) the both relations (72) and (73) lead to the result

1 1 1 1
exp(L)p =9 +3(LOT+IRL) + LoL+(Pal+10L) + 5 (@ L+ Lol?)

|
—L’®L% 74
0 ¥ (74)
On the other hand, the derivative of the exponential function can be obtained through the direct calculation
of the power series (18). Under consideration of (8) this delivers

exp(L i nl ZL" k& (75)

Taking into account the relation (71) specific for the tensor L (66) we immediately arrive at (74).

8. Conclusion

Non-symmetric tensor power series and their derivative cannot generally be represented in a closed form
by means of the well-known solutions for symmetric isotropic tensor functions based on the spectral de-
composition. The problem is that non-symmetric tensor arguments with repeated eigenvalues can possess
no spectral decomposition (in diagonal form) which necessitates to seek for other approaches. As such, we
derived in the present paper a closed-form representation for tensor power series and their derivative. This
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representation is given in terms of the eigenvalues of the tensor arguments and is valid for all second-order
tensors, symmetric and non-symmetric, with or without spectral decomposition. For the derivative of
tensor power series two alternative closed-form solutions are proposed. One of these solutions is based on
the definition of an isotropic tensor function without any reference to power series and can be of advantage
(see Remark 4.1). Establishing some universal tensor identities connecting fourth-order tensors constructed
with the tensor products “x”” and “®” these two solutions are shown to be equivalent. It is interesting to
note that one of these tensor identities represents the Rivlin’s identity (Rivlin, 1955) written in terms of
fourth-order tensors. In the special case of a tensor argument with a spectral decomposition our solutions
reduce to the well-known result for symmetric isotropic tensor function (see e.g. Carlson and Hoger, 1986).
Finally, we have illustrated the application of our closed formulas by an example being of special im-
portance in large strain anisotropic elasto-plasticity. As such, we have considered the exponential function
of the velocity gradient under simple shear. In this loading case the velocity gradient has a triple eigenvalue
and only two linearly independent eigenvectors excluding the application of any other solutions based on
the spectral decomposition. The results obtained by our closed-form representations coincide with those
ones due to the direct calculation of infinite tensor power series.
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