
A closed-form representation for the derivative
of non-symmetric tensor power series

Mikhail Itskov *, Nuri Aksel

Department of Applied Mechanics and Fluid Dynamics, University of Bayreuth, D-95440 Bayreuth, Germany

Received 21 January 2002; received in revised form 20 July 2002

To the memory of our colleague and teacher Professor Yavuz Bas�ar (1935–2002)

Abstract

In the present paper a closed-form representation for the derivative of non-symmetric tensor power series is pro-

posed. Particular attention is focused on the special case of repeated eigenvalues. In this case, a non-symmetric tensor

can possess no spectral decomposition (in diagonal form) such that the well-known solutions in terms of eigenpro-

jections as well as basis-free representations for isotropic functions of symmetric tensor arguments cannot be used.

Thus, our representation seems to be the only possibility to calculate the derivative of non-symmetric tensor power

series in a closed form. Finally, this closed formula is illustrated by an example being of special importance in large

strain anisotropic elasto-plasticity. As such, we consider the exponential function of the velocity gradient under simple

shear. Right in this loading case the velocity gradient has a triple defective eigenvalue excluding the application of any

other solutions based on the spectral decomposition.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Tensor-valued functions defined in terms of power series with respect to non-symmetric tensor argu-

ments are commonly used in continuum mechanics. For example, the exponential function of the velocity
gradient or other non-symmetric strain rates is very suitable for the formulation of evolution equations in

large strain viscoplasticity (see e.g. Sansour and Kollmann, 1998) as well as in anisotropic and particularly

single crystal plasticity (see e.g. Steinmann and Stein, 1996; Miehe, 1996). However, by implementing the

exponential mapping algorithm one needs not only the exponential function itself but also its derivative
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which is indispensable for the formulation of consistent algorithmic tangent moduli. If symmetric, an

isotropic tensor function along with its derivative can easily be obtained on the basis of the spectral de-

composition (Bowen and Wang, 1970, 1971; Chadwick and Ogden, 1971). This is certainly the case for

exponential and any other tensor functions expressible in terms of power series since such functions rep-
resent a subclass of isotropic tensor functions. Thereby, the derivative of the isotropic tensor function can

alternatively be obtained by means of the so-called basis-free representations based on the spectral de-

composition as well (Carlson and Hoger, 1986; Xiao, 1995; Xiao et al., 1998). On the contrary, a non-

symmetric tensor argument can possess no spectral decomposition (in diagonal form) which necessitates to

seek for other approaches (see e.g. Moler and Van Loan, 1978). A direct calculation of the derivative of

tensor power series (de Souza Neto, 2001) is numerically extremely expensive and for this reason inefficient.

A more elegant approach is based on the recurrent computation of the coefficients in the tensor power series

representation resulting from sequential application of the Cayley–Hamilton theorem. Until now this
procedure has only been used for the calculation of tensor power series (Miehe, 1996; Sansour and Koll-

mann, 1998) though it can likewise be implemented also for their derivative. With respect to numerical costs

this procedure is more economical since the maximal tensor power is restricted to two. However, the un-

derlying representation cannot be regarded as closed one. Indeed, the calculation of scalar coefficients

imbedded in this representation is based on the series being infinite for exponential and other tensor

functions defined by infinite power series.

To overcome the above mentioned difficulties we propose in the present paper a closed-form solution for

the derivative of tensor power series. The underlying idea is rather simple. By means of the sequential
application of the Cayley–Hamilton theorem one can obtain the closed-form representation for the de-

rivative of tensor power series. The scalar coefficients in this representation depend only on the principal

invariants or eigenvalues of the tensor argument. For this reason this representation must hold for all

tensor arguments with the same principal invariants or eigenvalues independent of whether these tensors

possess a spectral decomposition or not. In the case of distinct eigenvalues a tensor argument always

permits a spectral decomposition. Thereby, we may use the closed-form solution in terms of the eigenvalue-

bases even if the tensor argument is non-symmetric (Itskov, 2002). Using a limiting procedure this solution

can then be extended to the case of repeated eigenvalues where a non-symmetric tensor argument generally
possesses no spectral decomposition.

The paper is organized as follows. First, we introduce some necessary tensor notations and definitions

(Section 2). A difficulty in dealing with non-symmetric tensors are partly complex eigenvalues and eigen-

projections, so we are required to define complex vectors and tensors as well as operations with them (see

also Boulanger and Hayes, 1993). In Section 3 we recall the well-known recurrent procedure for the cal-

culation of tensor power series and extend it to the computation of their derivative. The recurrent com-

putations can be avoided by means of the closed-form representation obtained in Section 4. For the

derivative of the tensor power series we present in Section 5 an alternative form of the closed formula. It is
based on the direct differentiation of the above mentioned tensor power series representation resulting from

the application of the Cayley–Hamilton theorem. By using some universal tensor identities both results are

shown to be equivalent. Particular attention is focused in Sections 4 and 5 on the special case of repeated

eigenvalues. In this case a tensor argument can possess no spectral decomposition such that our solutions

seem to be the only possibility to calculate the derivative of non-symmetric tensor power series in a closed

form. On the contrary, in the special case of the tensor argument possessing a spectral decomposition the

solutions proposed in the paper are shown in Section 6 to coincide with the well-known representations

for isotropic functions of symmetric tensor arguments (see e.g. Carlson and Hoger, 1986; Xiao, 1995; Xiao
et al., 1998). Finally, an application of our closed formulas is illustrated in Section 7 by an example of the

exponential function of the velocity gradient under simple shear. In this loading case the velocity gradient

has a triple eigenvalue and only two linearly independent eigenvectors excluding the application of any

other solutions based on the spectral decomposition.
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2. Basic notations and definitions

Let C3 be a three-dimensional vector space over the field of complex numbers C. The scalar product of

two complex vectors is defined without using the complex conjugate values and is linear and commutative
with respect to both arguments (see Boulanger and Hayes, 1993):

a � b ¼ b � a; 8a; b 2 C3: ð1Þ

Let Clin be a set of all linear mappings of C3 into itself. The elements of Clin are called second-order tensors

(bold capitals). Second-order tensors can be formed from vectors with the aid of the tensor product ‘‘�’’

defined by

ða� bÞx ¼ ðb � xÞa; xða� bÞ ¼ ðx � aÞb 8a; b; x 2 C3: ð2Þ
Through the standard operations of sum and multiplication with a scalar Clin constitutes a finite-

dimensional vector space. The set Lin of all linear mappings within the three-dimensional vector space R3

over the field of real numbers R represents an important subset of Clin. Symmetric and orthogonal second-

order tensors constitute in turn subsets of Lin defined in the following manner: Sym ¼ A 2 Lin : A ¼ AT
� �

,
Orth ¼ Q 2 Lin : Q ¼ Q�T

� �
.

Fourth-order tensors form a set Clin (Lin) of all linear mappings of Clin (Lin) into itself such that (cf.

Del Piero, 1979):

B ¼ D : A; B 2 Clin 8A 2 Clin; 8D 2 Clin: ð3Þ
For the construction of fourth-order tensors from second-order ones we introduce the tensor products

‘‘� ’’ and ‘‘	’’ defined by (Itskov, 2000, 2002)

A� B : C ¼ ACB; ðA	 BÞ : C ¼ ðB : CÞA 8A;B;C 2 Clin: ð4Þ
Further, the simple contraction of fourth- and second-order tensors can be defined in the following

manner

ðADBÞ : C ¼ AðD : CÞB; 8D 2 Clin; 8A;B;C 2 Clin: ð5Þ
The main object of the paper are tensor-valued tensor functions GðAÞ defined by tensor power series

GðAÞ ¼ v0Iþ v1Aþ v2A
2 þ v3A

3 þ � � � 8A 2 Dlin � Lin; ð6Þ
where vi 2 R (i ¼ 1; 2; . . .) denote scalar constants. If infinite, the power series (6) is assumed to be con-

vergent over the definition domain Dlin of the corresponding tensor function GðAÞ.
The tensor power series (6) represent a subclass of isotropic tensor functions characterized by the

condition (see e.g. Truesdell and Noll, 1965):

GðQAQTÞ ¼ QGðAÞQT; 8Q 2 Orth: ð7Þ
For example, the exponential tensor function can be defined in the form (6) by

expðAÞ ¼
X1
n¼0

1

n!
An: ð8Þ

Of special importance for the following discussion is the derivative of a scalar- aðAÞ : Lin ! R and a

tensor-valued function GðAÞ : Lin ! Lin with respect to their tensor argument A 2 Lin. These functions

are said to be differentiable if the directional (Gateaux) derivatives

d

ds
aðAþ sXÞ

����
s¼0

and
d

ds
GðAþ sXÞ

����
s¼0
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exist in a neighbourhood of A and are continuous at A and there exist a second- aðAÞ;A 2 Lin or a fourth-

order tensor GðAÞ;A 2 Lin, respectively, such that (see e.g. Truesdell and Noll, 1965)

aðAÞ;A : X ¼ d

ds
aðAþ sXÞ

����
s¼0

; GðAÞ;A : X ¼ d

ds
GðAþ sXÞ

����
s¼0

8X 2 Lin: ð9Þ

The tensors aðAÞ;A and GðAÞ;A are referred to as derivative or gradient of the tensor functions aðAÞ and
GðAÞ, respectively.

By using the definitions (4)1 and (9) one can easily obtain

A;A¼ I; An;A¼
Xn�1

r¼0

An�1�r � Ar; n ¼ 1; 2; . . . ; ð10Þ

where I ¼ I� I represents the fourth-order identity tensor. Of special importance are also the following

product rules of differentiation (Itskov, 2000, 2002)

ðABÞ;C¼ A;C Bþ AB;C ; ðaAÞ;B¼ A	 a;BþaA;B ; ð11Þ
directly resulting from the definitions (4), (5) and (9).

3. A recurrent calculation of tensor power series and their derivative

The tensor power series (6) and their derivative can be computed by means of the recurrent relations

recalled below. The recurrent procedure is based on the sequential application of the Cayley–Hamilton

theorem written as

A3 � IAA
2 þ IIAA� IIIAI ¼ 0; 8A 2 Lin; ð12Þ

where the coefficients IA, IIA and IIIA represent the principal invariants of A defined by

IA ¼ trA; IIA ¼ 1

2
ðtrAÞ2
h

� trA2
i
; IIIA ¼ det A: ð13Þ

By virtue of (12) higher powers of A are expressible by

Ak ¼ cð0Þk Iþ cð1Þk Aþ cð2Þk A
2; ð14Þ

where the unknown coefficients cðrÞk (r ¼ 0; 1; 2; k ¼ 0; 1; 2; . . .) can be calculated by means of the following

recurrent relations (see e.g. Sansour and Kollmann, 1998)

cðrÞl ¼ drl; r; l ¼ 0; 1; 2;

cð0Þk ¼ cð2Þk�1IIIA; cð1Þk ¼ cð0Þk�1 � cð2Þk�1IIA; cð2Þk ¼ cð1Þk�1 þ cð2Þk�1IA; k ¼ 1; 2; . . .
ð15Þ

Thus, by using (14) the tensor power series (6) can be represented by

GðAÞ ¼ u0Iþ u1Aþ u2A
2; ð16Þ

where the scalar coefficients u0, u1 and u2 result from

ur ¼
X1
k¼0

vkc
ðrÞ
k ; r ¼ 0; 1; 2: ð17Þ

The relation (16) is well-known for isotropic functions of a symmetric tensor argument as the represen-
tation theorem (see e.g. Truesdell and Noll, 1965). It is essential that this representation is also valid for

non-symmetric tensor functions defined in terms of the power series (6).
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The direct differentiation of the tensor power series (6) with respect to the tensor argument yields by

means of (10)

GðAÞ;A¼
X1
n¼1

vn

Xn�1

k¼0

An�1�k � Ak: ð18Þ

Further, by virtue of (14) we obtain the representation

GðAÞ;A¼
X2
r;t¼0

grtA
r � At; ð19Þ

where the scalar coefficients grt (r; t ¼ 0, 1, 2) can be calculated by

grt ¼ gtr ¼
X1
n¼1

vn

Xn�1

k¼0

cðrÞn�1�kc
ðtÞ
k ; r; t ¼ 0; 1; 2: ð20Þ

Note, that for the exponential and other tensor functions defined by infinite power series, the use of the
representations (16) and (19) requires the calculation of infinite coefficients series (17) and (20).

4. A closed-form solution

To avoid numerical calculation of the coefficient series (17) and (20) closed-form solutions for the tensor

power series (6) and their derivative (18) can be obtained. To this end we again turn attention to the

representations (16) and (19) and in particular to the coefficients ur and grt (r; t ¼ 0, 1, 2) appearing there.
Under consideration of (15), (17) and (20) it is seen that these coefficients represent the functions of the

principal invariants or eigenvalues of the tensor argument A. Thus

ur ¼ urðIA; IIA; IIIAÞ ¼ urðk1; k2; k3Þ;
grt ¼ grtðIA; IIA; IIIAÞ ¼ grtðk1; k2; k3Þ; r; t ¼ 0; 1; 2:

ð21Þ

The crucial argument in the following consideration is that the functions (21) do not depend upon whether
the tensor argument is symmetric or non-symmetric or whether it possesses a spectral decomposition (in

diagonal form) or not. The coefficients (21) are uniquely determined in terms of the principal invariants or

eigenvalues of the tensor argument. Hence, general expressions for the functions urðk1; k2; k3Þ and

grtðk1; k2; k3Þ (r; t ¼ 0, 1, 2) can be obtained considering the special case of a tensor argument with a spectral

decomposition. These expressions will be then valid for all tensors with the same eigenvalues k1; k2 and k3!

In the case of distinct eigenvalues the procedure formulating the functions urðk1; k2; k3Þ ðr ¼ 1; 2; 3Þ is
rather standard one. It begins with the spectral decomposition of the tensor argument A 2 Lin:

A ¼
X3
i¼1

kiMi; MkMl ¼ dklMk; k; l ¼ 1; 2; 3: ð22Þ

Note, that the tensor A is not generally symmetric such that two of its three eigenvalues ki and the cor-

responding eigenvalue-bases Mi (i ¼ 1; 2; 3) can be complex. In the case of distinct eigenvalues the eigen-

value-bases are uniquely determined by the Sylvester�s formula:

Mr ¼
Y3
s¼1
s 6¼r

A� ksI

kr � ks
; r ¼ 1; 2; 3; k1 6¼ k2 6¼ k3 6¼ k1: ð23Þ
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On the basis of the spectral decomposition (22) the tensor function G(A) (6) can also be given in the spectral

form by

GðAÞ ¼
X3
i¼1

gðkiÞMi; ð24Þ

where the complex function

gðkÞ ¼
X1
k¼0

vkk
k ð25Þ

is usually referred to as diagonal function. Since the power series (25) converges on the spectrum of

A 2 Dlin (see e.g. Gantmacher, 1959), the function gðkÞ defined by (25) is holomorphic and as a result of

that infinitely often differentiable within the circle of convergence. Henceforth, we will also assume that the

function gðkÞ can equivalently be given in a closed form without any reference to infinite power series (25).

Now, substituting (23) into (24) and comparing the result obtained with (16) yields the well-known

relations (see e.g. Fitzgerald, 1980):

(i) Distinct eigenvalues: k1 6¼ k2 6¼ k3 6¼ k1,

u0 ¼
X3
i¼1

gðkiÞkjkk

Di
; u1 ¼ �

X3
i¼1

gðkiÞðkj þ kkÞ
Di

; u2 ¼
X3
i¼1

gðkiÞ
Di

; ð26Þ

where

Di ¼ ðki � kjÞðki � kkÞ; i 6¼ j 6¼ k 6¼ i ¼ 1; 2; 3: ð27Þ
To specify the functions grtðk1; k2; k3Þ (r; t ¼ 0, 1, 2) we first insert the spectral decomposition (22) into

the relation (18). This leads to the closed-form solution for the derivative of non-symmetric tensor power

series in terms of the eigenvalue-bases (see Itskov, 2002):

GðAÞ;A¼
X3
i

g0ðkiÞMi �Mi þ
X3
i;j 6¼i

gðkiÞ � gðkjÞ
ki � kj

Mi �Mj: ð28Þ

Considering in this solution the representation for the eigenvalue-bases (23) and comparing the result

obtained with (19) delivers

(i) Distinct eigenvalues: k1 6¼ k2 6¼ k3 6¼ k1,

g00 ¼
X3
i

k2
jk

2
kg

0ðkiÞ
D2

i
�
X3
i;j 6¼i

kikjk
2
k ½gðkiÞ � gðkjÞ�
ðki � kjÞ3Dk

;

g01 ¼ g10 ¼ �
X3
i

ðkj þ kkÞkjkkg0ðkiÞ
D2

i
þ
X3
i;j 6¼i

ðkj þ kkÞkikk½gðkiÞ � gðkjÞ�
ðki � kjÞ3Dk

;

g02 ¼ g20 ¼
X3
i

kjkkg0ðkiÞ
D2

i
�
X3
i;j 6¼i

kikk½gðkiÞ � gðkjÞ�
ðki � kjÞ3Dk

;

g11 ¼
X3
i

ðkj þ kkÞ2g0ðkiÞ
D2

i
�
X3
i;j 6¼i

ðkj þ kkÞðki þ kkÞ½gðkiÞ � gðkjÞ�
ðki � kjÞ3Dk

;
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g12 ¼ g21 ¼ �
X3
i

ðkj þ kkÞg0ðkiÞ
D2

i
þ
X3
i;j 6¼i

ðki þ kkÞ½gðkiÞ � gðkjÞ�
ðki � kjÞ3Dk

;

g22 ¼
X3
i

g0ðkiÞ
D2

i
�
X3
i;j 6¼i

gðkiÞ � gðkjÞ
ðki � kjÞ3Dk

; i 6¼ j 6¼ k 6¼ i: ð29Þ

In the case of distinct eigenvalues the expressions for the coefficients grtðk1; k2; k3Þ (r; t ¼ 0; 1; 2) (29) co-
incide with that ones obtained by Carlson and Hoger (1986) for isotropic functions of symmetric tensor

arguments.
The solution in the case of two repeated eigenvalues ka 6¼ kb ¼ kc results from (26), (27) and (29) as a

limit at D ¼ kb � kc ! 0. Thus, we obtain

(ii) Double coalescence of eigenvalues: ka 6¼ kb ¼ kc ¼ k, ða 6¼ b 6¼ cÞ,

u0 ¼ k
kgðkaÞ � kagðkÞ

ðka � kÞ2
þ kagðkÞ
ðka � kÞ �

kkag0ðkÞ
ðka � kÞ ;

u1 ¼ �2k
gðkaÞ � gðkÞ
ðka � kÞ2

þ g0ðkÞðka þ kÞ
ðka � kÞ ;

u2 ¼
gðkaÞ � gðkÞ
ðka � kÞ2

� g0ðkÞ
ðka � kÞ ; ð30Þ

g00 ¼
ð2k2k2

a � 6k3kaÞ½gðkaÞ � gðkÞ�
ðka � kÞ5

þ k4g0ðkaÞ þ ð2k3ka þ 4k2k2
a � 4kk3

a þ k4
aÞg0ðkÞ

ðka � kÞ4

þ ð2k2k2
a � k3

akÞg00ðkÞ
ðka � kÞ3

þ k2k2
ag

000ðkÞ
6ðka � kÞ2

;

g01 ¼ g10 ¼
ð3k3 þ 7kak

2 � 2k2
akÞ½gðkaÞ � gðkÞ�

ðka � kÞ5
� 2k3g0ðkaÞ þ ðk3 þ 7kak

2 � 2k2
akÞg0ðkÞ

ðka � kÞ4

� ð4k2ka þ k2
ak � k3

aÞg00ðkÞ
2ðka � kÞ3

� kakðka þ kÞg000ðkÞ
6ðka � kÞ2

;

g02 ¼ g20 ¼
ðk2

a � 3kak � 2k2Þ½gðkaÞ � gðkÞ�
ðka � kÞ5

þ k2g0ðkaÞ þ ðk2 þ 3kak � k2
aÞg0ðkÞ

ðka � kÞ4

þ ð3kka � k2
aÞg00ðkÞ

2ðka � kÞ3
þ kakg000ðkÞ
6ðka � kÞ2

;

g11 ¼ �4
kðka þ 3kÞ½gðkaÞ � gðkÞ�

ðka � kÞ5
þ 4

k2g0ðkaÞ þ kðka þ 2kÞg0ðkÞ
ðka � kÞ4

þ 2kðka þ kÞg00ðkÞ
ðka � kÞ3

þ ðka þ kÞ2g000ðkÞ
6ðka � kÞ2

;

g12 ¼ g21 ¼
ðka þ 7kÞ½gðkaÞ � gðkÞ�

ðka � kÞ5
� 2kg0ðkaÞ þ ðka þ 5kÞg0ðkÞ

ðka � kÞ4
� ðka þ 3kÞg00ðkÞ

2ðka � kÞ3
� ðka þ kÞg000ðkÞ

6ðka � kÞ2
;
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g22 ¼ �4
gðkaÞ � gðkÞ
ðka � kÞ5

þ g0ðkaÞ þ 3g0ðkÞ
ðka � kÞ4

þ g00ðkÞ
ðka � kÞ3

þ g000ðkÞ
6ðka � kÞ2

: ð31Þ

Similarly we proceed in the case of three repeated eigenvalues. To this end we consider the limit D ¼
ka � k ! 0 in (30) and (31). This yields

(iii) Triple coalescence of eigenvalues: k1 ¼ k2 ¼ k3 ¼ k,

u0 ¼ gðkÞ � kg0ðkÞ þ 1

2
k2g00ðkÞ; u1 ¼ g0ðkÞ � kg00ðkÞ; u2 ¼

1

2
g00ðkÞ; ð32Þ

g00 ¼ g0ðkÞ � kg00ðkÞ þ k2g000ðkÞ
2

� k3gIVðkÞ
12

þ k4gVðkÞ
120

;

g01 ¼ g10 ¼
g00ðkÞ
2

� kg000ðkÞ
2

þ k2gIVðkÞ
8

� k3gVðkÞ
60

;

g02 ¼ g20 ¼
g000ðkÞ
6

� kgIVðkÞ
24

þ k2gVðkÞ
120

; g11 ¼
g000ðkÞ
6

� kgIVðkÞ
6

þ k2gVðkÞ
30

;

g12 ¼ g21 ¼
gIVðkÞ
24

� kgVðkÞ
60

; g22 ¼
gVðkÞ
120

: ð33Þ

In the following discussion the issue of continuity of the tensor function GðAÞ given by (16), (26), (27), (30)

and (32) is of major importance. For isotropic functions of symmetric tensors the problem has been ad-

dressed by Man (1994, 1995). Here, it should namely be shown that the solutions (30) and (32) obtained for

the cases of repeated eigenvalues do not depend on the direction of the limits

ðiiÞ ðka; kb; kcÞ ! ðka; k; kÞ; ðiiiÞ ðka; kb; kcÞ ! ðk; k; kÞ: ð34Þ

It can be seen that the complex functions ur (r ¼ 0, 1, 2) defined by (26) and (27) are holomorphic at

least for distinct eigenvalues k1 6¼ k2 6¼ k3 6¼ k1. The cases of repeated eigenvalues should be treated sepa-

rately. First, we consider the case of double coalescence of eigenvalues (ii). Let kb ¼ k, D ¼ kc � k and

urðDÞ ¼ urðka; k; k þ DÞ (r ¼ 0; 1; 2). Keeping in mind that the diagonal function gðkÞ is holomorphic one

can expand the functions urðDÞ in the Taylor power series

urðDÞ ¼
X1
n¼0

aðrÞn Dn; r ¼ 0; 1; 2 ð35Þ

in the vicinity of the point D ¼ 0. Note that in the corresponding Laurent series the remaining terms with

negative powers identically vanish. Hence, we infer that the functions urðDÞ are holomorphic including the

point D ¼ 0. Thus, the solution in the case of two repeated eigenvalues urð0Þ ¼ aðrÞ0 (r ¼ 0, 1, 2) does not

depend on the direction of the limit (34)1 and is expressed by (30).

Similarly we proceed in the case of three repeated eigenvalues (iii). Let ka ¼ k, D1 ¼ kb � k, D2 ¼ kc � k
and urðD1;D2Þ ¼ urðk; k þ D1; k þ D2Þ (r ¼ 0; 1; 2). In the vicinity of the point ð0; 0Þ the complex functions

urðD1;D2Þ (r ¼ 0, 1, 2) are expandable in the Taylor power series

urðD1;D2Þ ¼
X1
k;n¼0

aðrÞkn Dk
1D

n
2; r ¼ 0; 1; 2 ð36Þ

and on account of this are holomorphic in this point as well. For example, for the function u2 the series (36)

begins as follows
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u2ðD1;D2Þ ¼
1

2
g00ðkÞ þ 1

6
g000ðkÞðD1 þ D2Þ þ

1

24
gIVðkÞðD2

1 þ D1D2 þ D2
2Þ þ � � � ð37Þ

We observe that the solution in the case of three repeated eigenvalues urð0; 0Þ ¼ aðrÞ00 (r ¼ 0,1,2) expressed by

(32) is also independent of the direction of the limit (34)2. Thus, the tensor function GðAÞ given by (16),

(26), (27), (30) and (32) is continuous on the whole definition domain Dlin. Using the same reasoning we

infer that this function is also continuously differentiable since the solution for GðAÞ;A (19), (29), (31) and
(33) is continuous on Dlin as well.

Remark 4.1. Instead of the power series (6) an isotropic tensor function can alternatively be defined by

the representation (16) where the coefficients ur (r ¼ 0; 1; 2) are expressed by (26), (27), (30) and (32)

and the diagonal function gðkÞ is explicitly given in a closed form (without infinite series). Such a definition

can be of advantage if the corresponding infinite tensor power series of the form (6) converges only on a

narrow subset of Lin. This can be illustrated e.g. by the logarithmic tensor function. Indeed, the tensor

power series

lnðAþ IÞ ¼
X1
n¼1

ð�1Þnþ1 A
n

n
ð38Þ

converges if jkij < 1 ði ¼ 1; 2; 3Þ which vastly restricts the definition domain of the logarithmic tensor

function (38). A more preferable definition is due to the complex logarithmic diagonal function (in the sense

of the principal value)

gðkÞ ¼ ln k; k 6¼ 0 ð39Þ

in the representation (16), (26), (27), (30) and (32). The logarithmic tensor function obtained in this manner

is defined for all invertible second-order tensors ð8A 2 Lin : det A 6¼ 0Þ.
In the case of distinct eigenvalues the tensor argument A 2 Lin always possesses a spectral decompo-

sition. Thereby, the derivative of an isotropic tensor function defined by power series (6) can alternatively

be obtained by means of the closed formula in terms of the eigenvalue-bases (eigenprojections) even if the

tensor A is non-symmetric (see Itskov, 2002). On the contrary, if some eigenvalues of the non-symmetric
tensor argument are multiple it can possess no spectral decomposition. This is namely the case if a repeated

eigenvalue is defective such that its algebraic multiplicity exceeds the geometric multiplicity i.e. the number

of linearly independent eigenvectors associated with this eigenvalue (see e.g. Golub and Van Loan, 1996).

In this case, the solution (19), (31) and (33) represents, to our best knowledge, the only possibility to

calculate the derivative of infinite tensor power series in a closed form.

5. An alternative form of the closed-form representation for the derivative of the isotropic tensor function

The derivative of the isotropic tensor function GðAÞ can alternatively be obtained by directly differen-

tiating the representation (16), (26) and (27) with respect to the tensor argument A 2 Lin. The advantage of
this procedure is that the function G(A) can be given by (16), (26), (27), (30) and (32) without any reference

to the tensor power series (6) which can extend its definition domain (see Remark 4.1).

The critical issue of this procedure is the differentiability of eigenvalues. If distinct, the eigenvalues of a

second-order tensor are proved to be differentiable (for the proof see e.g. Lax, 1997). The derivatives of

eigenvalues can be expressed using the Vieta�s theorem

k1 þ k2 þ k3 ¼ IA; k1k2 þ k2k3 þ k3k1 ¼ IIA; k1k2k3 ¼ IIIA: ð40Þ
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The differentiation of these relations with respect to A yields the linear equation system

1 1 1

k2 þ k3 k3 þ k1 k1 þ k2

k2k3 k3k1 k1k2

2
4

3
5 k1;A

k2;A
k3;A

8<
:

9=
; ¼

I

IAI� AT

A2 � IAAþ IIAI
� �T

8<
:

9=
;; ð41Þ

which has in the case of distinct eigenvalues the following unique solution

ki;A¼
1

Di
ðAT � kjIÞðAT � kkIÞ ¼MT

i ; i 6¼ j 6¼ k 6¼ i ¼ 1; 2; 3: ð42Þ

Remark 5.1. The identity ki;A¼MT
i is well-known in the perturbation theory for linear operators (see e.g.

Kato, 1966) but we included it to make the exposition self-contained.

Using the relation (42) and with aid of the product rule (11)2 we obtain another representation

(i) Distinct eigenvalues: k1 6¼ k2 6¼ k3 6¼ k1,

GðAÞ;A¼
X3
i¼1

ai½ðA� kjIÞðA� kkIÞ� 	 ½ðA� kjIÞðA� kkIÞ�T þ u1I þ u2ðA� Iþ I� AÞ;

i 6¼ j 6¼ k 6¼ i; ð43Þ

where u1 and u2 are given by (26) and

ai ¼
1

D2
i

g0ðkiÞ
�

� gðkiÞ
ki � kj

� gðkiÞ
ki � kk

�
þ gðkjÞ
Dkðki � kjÞ3

þ gðkkÞ
Djðki � kkÞ3

; i 6¼ j 6¼ k 6¼ i ¼ 1; 2; 3: ð44Þ

It is seen that the representation (16) is differentiable on the definition domain Dlin � Lin of the tensor

function GðAÞ at least for the tensor arguments with distinct eigenvalues. In the case of repeated eigen-

values the differentiability of (16) can be shown by means of the Ball�s lemma (Ball, 1984). Accordingly, a

tensor function GðAÞ is differentiable on a closed sparse subset Slin of the open definition domain Dlin,

if this function is continuous on Dlin and continuously differentiable on the complement Slin ¼
A 2 Dlin : A 62 Slin � Dlinf g and if there exist the limit

lim
A!B

GðAÞ;A ; 8B 2 Slin � Dlin; A 2 Slin: ð45Þ

In the previous section we have shown that the function GðAÞ defined by (16), (26), (27), (30) and (32) is

continuous on its definition domain. Further, let Slin � Dlin be a subset of tensors with repeated eigen-

values. We first prove that Slin is closed and sparse. Ball (1984) has shown that a sufficient condition for

such a set to be a closed and sparse is that it can be defined by means of a non-constant polynomial pðAÞ as
Slin ¼ fA 2 Dlin : pðAÞ ¼ 0g. The conditions of at least two repeated eigenvalues ka 6¼ kb ¼ kc ¼ k can be

formulated in view of (40) as follows

ka þ 2k ¼ IA; k2 þ 2kak ¼ IIA; kak
2 ¼ IIIA: ð46Þ

Eliminating the eigenvalues we obtain the only condition

�ðI2A � 3IIAÞ3=2 ¼
1

2
ð27IIIA � 9IIAIA þ 2I3AÞ: ð47Þ

Hence, the subset Slin can be formed by the zero set of the scalar-valued function

pðAÞ ¼ ðI2A � 3IIAÞ3 �
1

4
ð27IIIA � 9IIAIA þ 2I3AÞ

2
: ð48Þ
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Accordingly, pðAÞ is the polynomial function of the principal invariants and thus is polynomial with respect

to A.

In analogy a polynomial function can also be constructed for the subset Slin characterized by the triple

coalescence of eigenvalues. In this case we obtain instead of (48)

pðAÞ ¼ ðI2A � 3IIAÞ2 þ ð27IIIA � I3AÞ
2
: ð49Þ

It remains to show that the derivative (43) and (44) has a limit at pðAÞ ! 0. First we rewrite (43) as follows

GðAÞ;A ¼ A2 	 AT2
X3
i¼1

ai � ðA2 	 AT þ A	 AT2Þ
X3
i¼1

aiðkj þ kkÞ þ ðA2 	 Iþ I	 AT2Þ
X3
i¼1

aikjkk

þ A	 AT
X3
i¼1

aiðkj þ kkÞ2 � ðA	 Iþ I	 ATÞ
X3
i¼1

aikjkkðkj þ kkÞ þ I	 I
X3
i¼1

aik
2
jk

2
k

þ u1I þ u2ðA� Iþ I� AÞ; i 6¼ j 6¼ k 6¼ i: ð50Þ

Using the procedure described in the previous section it can be shown that the scalar coefficients ap-
pearing in (50) represent holomorphic functions of eigenvalues even if the eigenvalues coincide. Thus,

considering the limit case D ¼ kb � kc ! 0 in (50) we may write

(ii) Double coalescence of eigenvalues: ka 6¼ kb ¼ kc ¼ k, ða 6¼ b 6¼ cÞ,

GðAÞ;A ¼ C

 
� U

ðka � kÞ2

!
ðA� kIÞ2 	 ðAT � kIÞ2 þ � ½ðA� kIÞðA� kaIÞ� 	 ½ðA� kIÞðA� kaIÞ�T

þ U½I	 ðAT2 � IAA
T þ IIAIÞ � A	 ðIAI� ATÞ þ A2 	 I� þ u1I þ u2ðA� Iþ I� AÞ; ð51Þ

where u1 and u2 are defined according to (30) and

C ¼ 1

ðka � kÞ4
g0ðkaÞ
�

þ g0ðkÞ � 2
gðkaÞ � gðkÞ

ka � k

�
; � ¼ 1

ðka � kÞ2
1

6
g000ðkÞ

�
� U

�
;

U ¼ 1

ka � k

 
� 1

2
g00ðkÞ � g0ðkÞ

ka � k
þ gðkaÞ � gðkÞ

ðka � kÞ2

!
: ð52Þ

Using a similar procedure we further obtain by setting in (51) and (52) D ¼ ka � k ! 0

(iii) Triple coalescence of eigenvalues: k1 ¼ k2 ¼ k3 ¼ k,

GðAÞ;A ¼ g000ðkÞ
6

½I	 ðA2 � 3kAþ 3k2IÞT � A	 ð3kI� AÞT þ A2 	 I� þ gIVðkÞ
24

Að
h

� kIÞ 	 ðAT � kIÞ2

þ ðA� kIÞ2 	 ðAT � kIÞ
i
þ gVðkÞ

120
ðA� kIÞ2 	 AT

�
� kI

�2 þ ½g0ðkÞ � kg00ðkÞ�I

þ 1

2
g00ðkÞðA� Iþ I� AÞ: ð53Þ

Thus, we have obtained the representation for the derivative of the tensor function GðAÞ in two different

forms (19), (29), (31) and (33) on the one hand and (43), (44) and (51)–(53) on the other hand. It can be

shown that they are equivalent. To this end we first prove some universal tensor identities connecting

fourth-order tensors constructed by the tensor products ‘‘	’’ and ‘‘�’’ (4). The first identity directly results

from the differentiation of the Cayley–Hamilton relation (12). Thus, we obtain by virtue of (10) and (11)

A2 � Iþ A� Aþ I� A2 � IAðA� Iþ I� AÞ þ IIAI

� A2 	 Iþ A	 ðIAI� ATÞ � I	 ðAT2 � IAA
T þ IIAIÞ ¼ O 8A 2 Lin; ð54Þ
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where O denotes the fourth-order zero tensor characterized by O : A ¼ 0 8A 2 Lin. The relation (54) can be

considered as another form of the Rivlin�s identity (Rivlin, 1955) written in terms of fourth-order tensors.

Indeed, through the double contraction of (54) with an arbitrary second-order tensor B we obtain under

consideration of (4)

A2Bþ ABAþ BA2 � IAðABþ BAÞ þ IIAB� A2IB þ A IAIB½ � trðABÞ�
� I tr A2B

� ��
� IAtr ABð Þ þ IIAtrB

�
¼ 0 8A;B 2 Lin: ð55Þ

The second important identity reads as

Að
�

� kiIÞ A
�

� kjI
��

	 Að
�

� kiIÞ A
�

� kjI
��T ¼ Að

�
� kiIÞ A

�
� kjI

��
� Að
�

� kiIÞ A
�

� kjI
��
;

i 6¼ j ¼ 1; 2; 3; ð56Þ

and follows from the relation (cf. Carlson and Hoger, 1986)

Mi 	MT
i ¼Mi �Mi ðno sum: over i ¼ 1; 2; 3Þ: ð57Þ

Indeed, expressing the eigenvalue-basesMi of the tensor A 2 Lin through its right ni and left mi (i ¼ 1, 2, 3)

eigenvectors

Mi ¼ ni �mi ðno sum: over i ¼ 1; 2; 3Þ; ð58Þ
and contracting the right and left hand side of (57) with an arbitrary second-order tensor X 2 Clin we

obtain the same expressions

ðMi 	MT
i Þ : X ¼ trðMiXÞMi ¼ ðmiXniÞni �mi;

ðMi �MiÞ : X ¼MiXMi ¼ ðmiXniÞni �mi 8X 2 Clin ðno sum: over i ¼ 1; 2; 3Þ:
ð59Þ

Further, inserting the representation for the eigenvalue-bases (23) into (57) yields

Y3
s¼1
s 6¼r

A� ksI

kr � ks
	
Y3
s¼1
s 6¼r

AT � ksI

kr � ks
¼
Y3
s¼1
s6¼r

A� ksI

kr � ks
�
Y3
s¼1
s 6¼r

A� ksI

kr � ks
; r ¼ 1; 2; 3: ð60Þ

Thus, it is observable that the identity (56) holds at least for distinct eigenvalues of the tensor A. Con-

sidering the cases of repeated eigenvalues as a limit at k1 � k2 and (or) k2 � k3 tending to zero and keeping

in mind that the nominators in (60) can be represented as continuous functions of the eigenvalues we infer

that the identity (56) is generally valid.
Finally, considering the identities (54) and (56) in the solution (43), (44) and (51)–(53) one immediately

arrives at the representation (19), (29), (31) and (33).

6. Special case of the tensor argument possessing a spectral decomposition

The representations for the tensor power series and their derivative (16), (19), (26), (27), (29)–(33), (43),

(44) and (51)–(53) are valid for all second-order tensors even for those ones that have defective eigenvalues

and thus possess no spectral decomposition. To verify our results we specify the representations (30)–(33)

and (51)–(53) for the special case of the tensor argument possessing a spectral decomposition wherein

solutions for symmetric isotropic tensor functions can be used for the comparison.

In this special case the representations (30)–(33) and (51)–(53) can be simplified by means of the identities

A2 ¼ ka þ kð ÞA� kakI for the case of double coalescence of eigenvalues ðka 6¼ kb ¼ kc ¼ kÞ and A ¼ kI,
A2 ¼ k2I for the case of triple coalescence of eigenvalues ðk1 ¼ k2 ¼ k3 ¼ kÞ. Thus, we obtain the well-

known representation for symmetric isotropic tensor functions (see e.g. Carlson and Hoger, 1986):
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(ii) Double coalescence of eigenvalues: ka 6¼ kb ¼ kc ¼ k, A ¼ kaMa þ k I�Mað Þ,

GðAÞ ¼ kag kð Þ � kgðkaÞ
ka � k

Iþ gðkaÞ � gðkÞ
ka � k

A; ð61Þ

GðAÞ;A ¼
"
� 2kak

g kað Þ � g kð Þ
ðka � kÞ3

þ k2g0 kað Þ þ k2
ag

0ðkÞ
ka � kð Þ2

#
I� Iþ ðka

"
þ kÞ gðkaÞ � gðkÞ

ðka � kÞ3

� kg0ðkaÞ þ kag0ðkÞ
ðka � kÞ2

#
ðA� Iþ I� AÞ þ

"
� 2

gðkaÞ � gðkÞ
ðka � kÞ3

þ g0ðkaÞ þ g0ðkÞ
ðka � kÞ2

#
A� A; ð62Þ

or

GðAÞ;A¼ Cðka � kÞ2ðA� kIÞ 	 ðAT � kIÞ þ u1I þ u2 Að � Iþ I� AÞ; ð63Þ
where u1, u2 and C are given by (30) and (52), respectively.

(iii) Triple coalescence of eigenvalues: k1 ¼ k2 ¼ k3 ¼ k, A ¼ kI,

GðAÞ ¼ gðkÞI; GðAÞ;A¼ g0ðkÞI: ð64Þ

7. Example

To illustrate the application of the closed-form solutions (16), (19), (26), (27), (29)–(33), (43), (44) and

(51)–(53) we consider the exponential function of the velocity gradient under simple shear. In this loading

case the deformation gradient can be given with respect to the Cartesian co-ordinate system by

F ¼ Fijei � ej; Fij ¼
1 c 0
0 1 0

0 0 1

2
4

3
5; ei � ej ¼ dij; ð65Þ

where c denotes the shear number. Thus, the velocity gradient L ¼ _FFF�1 takes the form

L ¼ Lijei � ej; Lij ¼
0 _cc 0

0 0 0

0 0 0

2
4

3
5: ð66Þ

It observable that L has the triple eigenvalue

k1 ¼ k2 ¼ k3 ¼ k ¼ 0; ð67Þ
which is defective, since it is associated with only two linearly independent (right) eigenvectors expressible

in the normalized form by

n1 ¼ e1; n2 ¼ e3: ð68Þ
Hence, the tensor L (66) possesses no spectral decomposition (in diagonal form) such that its isotropic

functions as well as their derivative cannot be obtained by means of representations derived with the aid of

the eigenprojections. Instead, we exploit the closed-form solution presented above and compare the result

with that one due to the direct calculation of the tensor power series (8) and (18).

First, according to (16) and (32) we obtain for the case of three repeated eigenvalues

expðLÞ ¼ ek 1

2
k2

�
� k þ 1

�
Iþ ekð1� kÞLþ 1

2
ekL2: ð69Þ
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Thus, under consideration of (67)

expðLÞ ¼ Iþ Lþ 1

2
L2: ð70Þ

The same result can also be obtained directly from the definition of the exponential function (8) by ex-
ploiting the relation

Ln ¼ 0; n ¼ 2; 3; . . . ; ð71Þ
following from the structure (nilpotent) of the tensor L (66). The derivative of the exponential function

results from (19) and (33)

expðLÞ;L ¼ ek 1

��
� k þ k2

2
� k3

12
þ k4

120

�
I þ 1

2

�
� k
2
þ k2

8
� k3

60

�
Lð � Iþ I� LÞ

þ 1

6

�
� k
6
þ k2

30

�
L� Lþ 1

6

�
� k
24

þ k2

120

��
L2 � Iþ I� L2

�

þ 1

24

�
� k
60

�
L2
�

� Lþ L� L2
�
þ 1

120
L2 � L2

�
ð72Þ

or from (53) in another form

expðLÞ;L ¼ ek

6
I
h

	 L2
�

� 3kLþ 3k2I
�T � L	 3kIð � LÞT þ L2 	 I

i
þ ek

24
Lð

h
� kIÞ 	 LT

�
� kI

�2 þ Lð � kIÞ2 	 LT
�

� kI
�i

þ ek

120
ðL� kIÞ2 	 LT

�
� kI

�2 þ ekð1� kÞI þ 1

2
ek Lð � Iþ I� LÞ; ð73Þ

which is equivalent to (72) according to the identities (54) and (56).

Thus, under consideration of (67) the both relations (72) and (73) lead to the result

expðLÞ;L¼ I þ 1

2
ðL� Iþ I� LÞ þ 1

6
L� Lþ 1

6
L2
�

� Iþ I� L2
�
þ 1

24
L2
�

� Lþ L� L2
�

þ 1

120
L2 � L2: ð74Þ

On the other hand, the derivative of the exponential function can be obtained through the direct calculation

of the power series (18). Under consideration of (8) this delivers

expðLÞ;L¼
X1
n¼1

1

n!

Xn�1

k¼0

Ln�1�k � Lk: ð75Þ

Taking into account the relation (71) specific for the tensor L (66) we immediately arrive at (74).

8. Conclusion

Non-symmetric tensor power series and their derivative cannot generally be represented in a closed form

by means of the well-known solutions for symmetric isotropic tensor functions based on the spectral de-

composition. The problem is that non-symmetric tensor arguments with repeated eigenvalues can possess

no spectral decomposition (in diagonal form) which necessitates to seek for other approaches. As such, we
derived in the present paper a closed-form representation for tensor power series and their derivative. This
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representation is given in terms of the eigenvalues of the tensor arguments and is valid for all second-order

tensors, symmetric and non-symmetric, with or without spectral decomposition. For the derivative of

tensor power series two alternative closed-form solutions are proposed. One of these solutions is based on

the definition of an isotropic tensor function without any reference to power series and can be of advantage
(see Remark 4.1). Establishing some universal tensor identities connecting fourth-order tensors constructed

with the tensor products ‘‘	’’ and ‘‘�’’ these two solutions are shown to be equivalent. It is interesting to

note that one of these tensor identities represents the Rivlin�s identity (Rivlin, 1955) written in terms of

fourth-order tensors. In the special case of a tensor argument with a spectral decomposition our solutions

reduce to the well-known result for symmetric isotropic tensor function (see e.g. Carlson and Hoger, 1986).

Finally, we have illustrated the application of our closed formulas by an example being of special im-

portance in large strain anisotropic elasto-plasticity. As such, we have considered the exponential function

of the velocity gradient under simple shear. In this loading case the velocity gradient has a triple eigenvalue
and only two linearly independent eigenvectors excluding the application of any other solutions based on

the spectral decomposition. The results obtained by our closed-form representations coincide with those

ones due to the direct calculation of infinite tensor power series.
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